Part Number Hot Search : 
525CZ A476M DG309DY L6423AT EHF16B1 DDTA113 071BL HFS6N90
Product Description
Full Text Search
 

To Download IRFR48Z-15 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  auirfr48z d-pak auirfr48z features advanced process technology ultra low on-resistance 175c operating temperature fast switching repetitive avalanche allowed up to tjmax lead-free, rohs compliant automotive qualified * description specifically designed for automotive applications, thi power mosfet utilizes the latest processing techniques to achieve extremely low on- resistance per silicon area. additional features of this design are a 175c junction operating temperature, fast switching speed and improved repetitive ava- lanche rating . these features combine to make this design an extremely efficient and reliable device for use in automotive applications and a wide variety of other applications. absolute maximum ratings stresses beyond those listed under ?absolute maximum ratings? may cause permanent damage to the device. these are stress ratings only; and functional operation of the device at these or any other condition beyond those indicated in the specifications is not implied. exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. the thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. ambient temperature (t a ) is 25c, unless otherwise specified. v (br)dss 55v r ds(on) max. 11m ? i d (silicon limited) 62a i d (package limited) 42a s d g parameter units i d @ t c = 25c continuous drain current, v gs @ 10v (silicon limited) i d @ t c = 100c continuous drain current, v gs @ 10v a i d @ t c = 25c continuous drain current, v gs @ 10v (packa g e limited) i dm p u l se d d ra i n c urren t p d @ t c = 25c power dissipation w linear derating factor w/c v gs gate-to-source volta g e v e as single pulse avalanche energy (thermally limited)  mj e as (tested ) single pulse avalanche energy tested value  i ar a va l anc h e c urren t  a e ar r epe titi ve a va l anc h e e ner gy  mj t j operatin g junction and t stg stora g e temperature ran g ec soldering temperature, for 10 seconds (1.6mm from case ) thermal resistance parameter t y p. max. units r jc j unc ti on- t o- c ase  ??? 1.64 r ja j unc ti on- t o- a m bi en t (pcb moun t)  ??? 40 c/w r ja junction-to-ambient ??? 110 110 74 see fig.12a, 12b, 15, 16 91 0.61 20 max. 62 44 250 42 -55 to + 175 300 2014-8-22 1 www.kersemi.com
 s d g static electrical characteristics @ t j = 25c (unless otherwise specified) parameter min. t y p. max. units v (br)dss drain-to-source breakdown volta g e55??????v ? v (br)dss / ? t j breakdown volta g e temp. coefficient ??? 0.054 ??? v/c r ds(on) static drain-to-source on-resistance ??? 8.86 11 m ? v gs(th) gate threshold volta g e 2.0 ??? 4.0 v g fs forward transconductance 120 ??? ??? s i dss drain-to-source leaka g e current ??? ??? 20 a ??? ??? 250 i gss gate-to-source forward leaka g e ??? ??? 200 na gate-to-source reverse leaka g e ??? ??? -200 dynamic electrical characteristics @ t j = 25c (unless otherwise specified) parameter min. t y p. max. units q g total gate char g e ??? 40 60 q gs gate-to-source char g e ??? 11 ??? nc q gd gate-to-drain ("miller") char g e ??? 15 ??? t d(on) turn-on dela y time ???15??? t r rise time ???61??? t d(off) turn-off dela y time ???40???ns t f fall time ???35??? l d internal drain inductance ??? 4.5 ??? between lead, nh 6mm (0.25in.) l s internal source inductance ??? 7.5 ??? from packa g e and center of die contact c iss input capacitance ??? 1720 ??? c oss output capacitance ??? 290 ??? c rss reverse transfer capacitance ??? 160 ??? pf c oss output capacitance ??? 1000 ??? c oss output capacitance ??? 230 ??? c oss eff. effective output capacitance ??? 360 ??? diode characteristics parameter min. t y p. max. units i s continuous source current ??? ??? 37 (body diode) a i sm pulsed source current ??? ??? 250 (body diode)  v sd diode forward volta g e ??? ??? 1.3 v t rr reverse recover y time ??? 20 40 ns q rr reverse recover y char g e ??? 14 28 nc t on forward turn-on time intrinsic turn-on time is negligible (turn-on is dominated by ls+ld) v gs = 10v  v dd = 28v i d = 37a r g = 12 ? t j = 25c, i s = 37a, v gs = 0v  t j = 25c, i f = 37a, v dd = 28v di/dt = 100a/ s  conditions v gs = 0v, i d = 250a reference to 25c, i d = 1ma v gs = 10v, i d = 37a  v ds = v gs , i d = 50a v ds = 55v, v gs = 0v v ds = 55v, v gs = 0v, t j = 125c mosfet symbol showing the integral reverse p-n junction diode. conditions v gs = 10v  v gs = 0v v ds = 25v ? = 1.0mhz v gs = 0v, v ds = 1.0v, ? = 1.0mhz v gs = 0v, v ds = 44v, ? = 1.0mhz v gs = 0v, v ds = 0v to 44v  v gs = 20v v gs = -20v v ds = 44v v ds = 25v, i d = 37a i d = 37a conditions   repetitive rating; pulse width limited by max. junction temperature. (see fig. 11).  limited by t jmax , starting t j = 25c, l = 0.11mh r g = 25 ? , i as = 37a, v gs =10v. part not recommended for use above this value.  pulse width 1.0ms; duty cycle 2%.  c oss eff. is a fixed capacitance that gives the same charging time as c oss while v ds is rising from 0 to 80% v dss  limited by t jmax , see fig.12a, 12b, 15, 16 for typical repetitive avalanche performance.  this value determined from sample failure population, starting t j = 25c, l = 0.11mh, r g = 25 ? , i as = 37a, v gs =10v.  when mounted on 1" square pcb (fr-4 or g-10 material) . for recommended footprint and soldering techniques refer to application note #an-994.  
     
  2014-8-22 2 www.kersemi.com
  
 
      

 
 
  
   
 
 !"!#

 
# 
  
 qualification information ? d-pak msl1 rohs compliant yes esd machine model class m4 (425v) aec-q101-002 human body model class h1b (1000v) aec-q101-001 charged device model class c5 (1125v) aec-q101-005 moisture sensitivity level qualification level automotive (per aec-q101) ?? comments: this part number(s) passed automotive qualification. ir?s industrial and consumer qualification level is granted by extension of the higher automotive level.  2014-8-22 3 www.kersemi.com
fig 2. typical output characteristics fig 1. typical output characteristics fig 3. typical transfer characteristics fig 4. typical forward transconductance vs. drain current 0.1 1 10 100 v ds , drain-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) vgs top 15v 10v 8.0v 7.0v 6.0v 5.5v 5.0v bottom 4.5v 60s pulse width tj = 25c 4.5v 2 4 6 8 10 12 v gs , gate-to-source voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( ) t j = 25c t j = 175c v ds = 25v 60s pulse width 0 20406080 i d ,drain-to-source current (a) 0 10 20 30 40 50 60 g f s , f o r w a r d t r a n s c o n d u c t a n c e ( s ) t j = 25c t j = 175c v ds = 10v 380s pulse width 0.1 1 10 100 v ds , drain-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 4.5v 60s pulse width tj = 175c vgs top 15v 10v 8.0v 7.0v 6.0v 5.5v 5.0v bottom 4.5v  2014-8-22 4 www.kersemi.com
fig 8. maximum safe operating area fig 6. typical gate charge vs. gate-to-source voltage fig 5. typical capacitance vs. drain-to-source voltage fig 7. typical source-drain diode forward voltage 1 10 100 v ds , drain-to-source voltage (v) 100 1000 10000 c , c a p a c i t a n c e ( p f ) v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd c oss c rss c iss 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 v sd , source-to-drain voltage (v) 0.10 1.00 10.00 100.00 1000.00 i s d , r e v e r s e d r a i n c u r r e n t ( a ) t j = 25c t j = 175c v gs = 0v 0 102030405060 q g total gate charge (nc) 0 4 8 12 16 20 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 44v vds= 28v vds= 11v i d = 37a 1 10 100 v ds , drain-tosource voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) tc = 25c tj = 175c single pulse 1msec 10msec operation in this area limited by r ds (on) 100sec dc  2014-8-22 5 www.kersemi.com
fig 11. maximum effective transient thermal impedance, junction-to-case fig 9. maximum drain current vs. case temperature fig 10. normalized on-resistance vs. temperature 1e-006 1e-005 0.0001 0.001 0.01 0.1 t 1 , rectangular pulse duration (sec) 0.001 0.01 0.1 1 10 t h e r m a l r e s p o n s e ( z t h j c ) 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthjc + tc ri (c/w) i (sec) 0.7206 0.000326 0.6009 0.001810 0.3175 0.014886 j j 1 1 2 2 3 3 r 1 r 1 r 2 r 2 r 3 r 3 c ci i / ri ci= i / ri -60 -40 -20 0 20 40 60 80 100 120 140 160 180 t j , junction temperature (c) 0.5 1.0 1.5 2.0 2.5 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( n o r m a l i z e d ) i d = 37a v gs = 10v 25 50 75 100 125 150 175 t c , case temperature (c) 0 10 20 30 40 50 60 70 i d , d r a i n c u r r e n t ( a ) limited by package  2014-8-22 6 www.kersemi.com
q g q gs q gd v g charge !"$ fig 13b. gate charge test circuit fig 13a. basic gate charge waveform fig 12c. maximum avalanche energy vs. drain current fig 12b. unclamped inductive waveforms fig 12a. unclamped inductive test circuit t p v (br)dss i as fig 14. threshold voltage vs. temperature r g i as 0.01 ? t p d.u.t l v ds + - v dd driver a 15v 20v v gs 1k vcc dut 0 l -75 -50 -25 0 25 50 75 100 125 150 175 t j , temperature ( c ) 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 v g s ( t h ) g a t e t h r e s h o l d v o l t a g e ( v ) i d = 1.0a i d = 50a i d = 150a i d = 250a i d = 1.0ma 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 50 100 150 200 250 300 e a s , s i n g l e p u l s e a v a l a n c h e e n e r g y ( m j ) i d top 4.3a 6.3a bottom 37a  2014-8-22 7 www.kersemi.com
fig 15. typical avalanche current vs.pulsewidth fig 16. maximum avalanche energy vs. temperature notes on repetitive avalanche curves , figures 15, 16: (for further info, see an-1005 at www.irf.com) 1. avalanche failures assumption: purely a thermal phenomenon and failure occurs at a temperature far in excess of t jmax . this is validated for every part type. 2. safe operation in avalanche is allowed as long ast jmax is not exceeded. 3. equation below based on circuit and waveforms shown in figures 12a, 12b. 4. p d (ave) = average power dissipation per single avalanche pulse. 5. bv = rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. i av = allowable avalanche current. 7. ? t = allowable rise in junction temperature, not to exceed t jmax (assumed as 25c in figure 15, 16). t av = average time in avalanche. d = duty cycle in avalanche = t av f z thjc (d, t av ) = transient thermal resistance, see figure 11) p d (ave) = 1/2 ( 1.3bvi av ) =   t/ z thjc i av = 2  t/ [1.3bvz th ] e as (ar) = p d (ave) t av 1.0e-06 1.0e-05 1.0e-04 1.0e-03 1.0e-02 1.0e-01 tav (sec) 0.1 1 10 100 1000 a v a l a n c h e c u r r e n t ( a ) 0.05 duty cycle = single pulse 0.10 allowed avalanche current vs avalanche pulsewidth, tav assuming ? tj = 25c due to avalanche losses 0.01 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 20 40 60 80 e a r , a v a l a n c h e e n e r g y ( m j ) top single pulse bottom 1% duty cycle i d = 37a  2014-8-22 8 www.kersemi.com
fig 17. %&'  ()(
*
 
 for n-channel hexfet   power mosfets 
 
  ?  
 
  ?   
  ?  

 
   
  p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop re-applied voltage reverse recovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period +      !"
# !$ $
# + + - + + + - - -       ?      ? 
 !
"#"" ?       $
 %% ? "#""&#  
 v ds 90% 10% v gs t d(on) t r t d(off) t f   '( 1 )  $
  0.1 %     %  + -   fig 18a. switching time test circuit fig 18b. switching time waveforms  2014-8-22 9 www.kersemi.com
 

  
      
   d-pak part marking information    '
  ,-, ..-. &.& -

(/01 %
2 0 3 0
   2014-8-22 10 www.kersemi.com
  

  !  "# 
      
   tr 16.3 ( .641 ) 15.7 ( .619 ) 8.1 ( .318 ) 7.9 ( .312 ) 12.1 ( .476 ) 11.9 ( .469 ) feed direction feed direction 16.3 ( .641 ) 15.7 ( .619 ) trr trl notes : 1. controlling dimension : millimeter. 2. all dimensions are shown in millimeters ( inches ). 3. outline conforms to eia-481 & eia-541. notes : 1. outline conforms to eia-481. 16 mm 13 inch  2014-8-22 11 www.kersemi.com
ordering information base part number package type standard pack complete part number form quantit y auirfr48z d p ak tube 75 auirfr48z ta p e and reel 2000 auirfr48ztr ta p e and reel left 3000 auirfr48ztrl ta p e and reel ri g ht 3000 auirfr48ztrr  2014-8-22 12 www.kersemi.com


▲Up To Search▲   

 
Price & Availability of IRFR48Z-15

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X